A Connected Separable Metric Space with a Dispersed Chebyshev Set

SUSANNA PAPADOPOULOU*

Katholische Universität Eichstätt and Mathematisches Institut der Universität Erlangen-Nürnberg

> Communicated by Oved Shisha Received December 7, 1981

Klee [1] has shown that metric spaces containing discrete Chebyshev sets are subject to certain topological limitations. In this connection he posed the question whether a connected separable metric space can contain such a set.

We give an example, which answers this question in the affirmative. It is constructed as the union X of a sequence (S_n) of finite-dimensional simplices in l_2 . They contain distinguished vertices b_n such that the distance of any point x in S_n from b_n is less than the distance between x and b_m for $m \neq n$. So the set $B = \{b_n: n = 0, 1, 2, ...\}$ is a Chebyshev set in X. Moreover, by the given construction one achieves that B is $\frac{1}{2}$ -dispersed and that, for each n, one vertex of S_n can be approximated by a sequence (x_m) with $x_m \in S_m$. This last fact guarantees the connectedness of X.

1

Let e_{00} , e_{10} , e_{11} , e_{n0} , e_{n1} , e_{nn} , e_{nn} , e_{nn} be an orthonormal set in l_2 . We put

 $a_{00} = 0$

and for n = 1, 2, ..., k = 0, 1, ..., n - 1,

$$a_{nk} = \sum_{j=1}^{n-k-1} \frac{1}{2^{j+1}} e_{j0} + \frac{1}{2^{n+1}} \sum_{j=0}^{k} e_{nj}$$

(where we define $\sum_{j=l}^{k} a_j = 0$ if l > k).

* Present address: Department of Mathematics, University of Crete, Iraklion, Crete, Greece,

For each n = 2, 3, ..., we have then

$$\|a_{n,n-1} - a_{n0}\| = \left\|\frac{1}{2^{n+1}} \sum_{j=1}^{n-1} e_{nj} - \sum_{j=1}^{n-1} \frac{1}{2^{j+1}} e_{j0}\right\|$$
$$\leq \frac{n-1}{2^{n+1}} + \sum_{j=1}^{n-1} \frac{1}{2^{j+1}} < \frac{1}{2^2} + \frac{1}{2} < 1.$$

Therefore we can put $\beta_n = (1 - \|\frac{1}{2}(a_{n,n-1} - a_{n0})\|^2)^{1/2}$ for n = 1, 2,..., and consider the points

$$a_{01} = e_{00},$$

 $a_{nn} = \frac{1}{2}(a_{n,n-1} + a_{n0}) + \beta_n e_{nn}, \qquad n = 1, 2,...$

LEMMA. The above defined points a_{00} , a_{01} , a_{nk} , k = 0, 1, ..., n, n = 1, 2, ..., have the following properties:

(i) $\lim_{n \to k^{-1}} a_{k0}$ for each $k = 0, 1, \dots$

(ii) For each n = 3, 4,..., the differences $a_{n1} - a_{n0}, a_{n2} - a_{n1},..., a_{n,n-1} - a_{n,n-2}$ are pairwise orthogonal.

- (iii) $||a_{nn} a_{nk}|| = 1$ for all $n \ge 1, k < n$.
- (iv) $||a_{nn} a_{mk}|| > 1$ for all $n, m \ge 1, k < m, n \ne m$.
- (v) $||a_{nn} a_{00}|| > 1$ for all $n \ge 1$.
- (vi) $||a_{01} a_{mk}|| > 1$ for all $m \ge 1$, k < m.
- (vii) $||a_{nn} a_{mm}|| > \frac{1}{2}$ for all $n, m \ge 1, n \ne m$.
- (viii) $||a_{01} a_{nn}|| > \frac{1}{2}$ for all $n \ge 1$.

Proof. Properties (i) and (ii) are clear from the definitions.

(iii) By the definition of a_{nn} we have $a_{nn} - a_{nk} = \frac{1}{2}(a_{n,n-1} - a_{nk}) + \frac{1}{2}(a_{n0} - a_{nk}) + \beta_n e_{nn}$. By (ii) the differences $a_{n,n-1} - a_{nk}$ and $a_{n0} - a_{nk}$ are orthogonal to each other. Since they are also orthogonal to e_{nn} , we get

$$\|a_{nn} - a_{nk}\| = \|\frac{1}{2}(a_{n,n-1} - a_{nk}) - \frac{1}{2}(a_{n0} - a_{nk}) + \beta_n e_{nn}\|$$
$$= \|\frac{1}{2}(a_{n,n-1} - a_{n0}) + \beta_n e_{nn}\|.$$

It follows that

$$||a_{nn} - a_{nk}||^2 = ||\frac{1}{2}(a_{n,n-1} - a_{n0})||^2 + \beta_n^2 = 1.$$

(iv) We observe that

$$a_{nn} - a_{n0} = \frac{1}{2}(a_{n,n-1} - a_{n0}) + \beta_n e_{nn}$$

= $\frac{1}{2^{n+2}} \sum_{j=1}^{n-1} e_{nj} + \beta_n e_{nn} - \sum_{j=1}^{n-1} \frac{1}{2^{j+2}} e_{j0},$
 $a_{nn} - a_{mk} = \frac{1}{2^{n+2}} \sum_{j=1}^{n-1} e_{nj} + \beta_n e_{nn} - \frac{1}{2^{m+1}} \sum_{j=1}^{k} e_{mj}$
 $+ \sum_{j=1}^{n-1} \frac{1}{2^{j+2}} e_{j0} + \frac{1}{2^{n+1}} e_{n0} - \sum_{j=1}^{m-1} \frac{1}{2^{j+1}} e_{j0} - \frac{1}{2^{m+1}} e_{m0}.$

Comparing the coefficients in the above two formulas we see that $||a_{nn} - a_{mk}|| > ||a_{nn} - a_{n0}||$. The assertion follows then from (iii).

(v) Clearly we have

$$a_{nn} - a_{00} = a_{nn} = \frac{1}{2^{n+1}} e_{n0} + \frac{1}{2^{n+2}} \sum_{j=1}^{n-1} e_{nj} + \beta_n e_{nn} + \sum_{j=1}^{n-1} \frac{1}{2^{j+2}} e_{j0}.$$

Comparing with the first formula in the proof of (iv) we get $||a_{nn} - a_{00}|| > ||a_{nn} - a_{n0}|| = 1$.

(vi) Obviously $||a_{01} - a_{mk}|| = ||e_{00} - a_{mk}|| > ||e_{00}|| = 1.$

(vii) Assume that $n > m \ge 1$. Then we have

$$a_{nn} - a_{mm} = \frac{1}{2^{n+2}} \sum_{j=1}^{n-1} e_{nj} + \beta_n e_{nn} - \frac{1}{2^{m+2}} \sum_{j=1}^{m-1} e_{mj} - \beta_m e_{mm} - \frac{1}{2^{m+2}} e_{m0} + \sum_{j=m+1}^{n-1} \frac{1}{2^{j+2}} e_{j0} + \frac{1}{2^{n+1}} e_{n0},$$

therefore

$$\|a_{nn} - a_{mm}\| > \left\| \frac{1}{2^{n+2}} \sum_{j=1}^{n-1} e_{nj} + \beta_n e_{nn} + \sum_{j=m+1}^{n-1} \frac{1}{2^{j+2}} e_{j0} + \frac{1}{2^{n+1}} e_{n0} \right\|$$
$$= \left\| a_{nn} - \sum_{j=1}^{m} \frac{1}{2^{j+2}} e_{j0} \right\|$$
$$\geqslant \|a_{nn}\| - \sum_{j=1}^{m} \frac{1}{2^{j+2}} > \|a_{nn}\| - \frac{1}{2}.$$

Since $||a_{nn}|| > 1$ (by (v)), we get $||a_{nn} - a_{mm}|| > \frac{1}{2}$. (viii) Obviously $||a_{01} - a_{nn}|| = ||e_{00} - a_{nn}|| > ||e_{00}|| = 1$.

322

We are now able to construct the announced example. To this end we put

$$S_{00} = [a_{00}, a_{01}], \qquad S_n = co(\{a_{n0}, a_{n1}, ..., a_{nn}\}) \qquad \text{for} \quad n = 1, 2, ...$$

The set $X = \bigcup_{n \ge 0} S_n$ is then a separable metric space, which is connected because of (i).

We consider now the points $b_0 = a_{01}$, $b_n = a_{nn}$ for n = 1, 2,... By (vii) and (viii) the set $B = \{b_n: n = 0, 1,...\}$ is $\frac{1}{2}$ -dispersed. Moreover, if x is a vertex of S_n and $n \neq m$, properties (iii)--(vi) imply that $||x - b_n|| < ||x - b_m||$. Since we consider the l_2 -norm, the last inequality extends to all points of S_n proving that B is a Chebyshev set in X.

Reference

1. V. KLEE, Dispersed Chebyshev sets and coverings by balls, *Math. Ann.* 257 (1981), 251-260.