A Connected Separable Metric Space with a Dispersed Chebyshev Set

Susanna Papadopoulou*
Katholische Universität Eichstält and Mathematisches Institut der Universität Erlangen-Nürnberg
Communicated by Oved Shishat
Received December 7. 1981

Klee $|I|$ has shown that metric spaces containing discrete Chebyshev sets are subject to certain topological limitations. In this connection he posed the question whether a connected separable metric space can contain such a set.

We give an example, which answers this question in the affirmative. It is constructed as the union X of a sequence (S_{n}) of finite-dimensional simplices in l_{2}. They contain distinguished vertices b_{n}, such that the distance of any point x in S_{n} from b_{n} is less than the distance between x and b_{m} for $m \neq n$. So the set $B=\left\{b_{n}: n=0,1,2, \ldots\right\}$ is a Chebyshev set in X. Moreover, by the given construction one achieves that B is $\frac{1}{2}$-dispersed and that, for each n. one vertex of S_{n} can be approximated by a sequence $\left(x_{m}\right)$ with $x_{m} \in S_{m}$. This last fact guarantees the connectedness of X.

1

Let $e_{00}, e_{10}, e_{11}, \ldots, e_{n 0}, e_{n 1}, \ldots, e_{n n}, \ldots$ be an orthonormal set in l_{2}. We put

$$
a_{001}=0
$$

and for $n=1,2, \ldots, k=0,1, \ldots, n-1$,

$$
a_{n k}=\sum_{j}^{k}{ }^{k} \frac{1}{2^{i+1}} e_{j 0}+\frac{1}{2^{n+1}} \underline{j}_{i}^{k} e_{n i}
$$

(where we define $\sum_{j-1}^{k} a_{j}=0$ if $l>k$).

* Present address: Department of Mathematics, University of Crete. Iraklion. Crete, Greece.

For each $n=2,3, \ldots$, we have then

$$
\begin{aligned}
\left\|a_{n, n-1}-a_{n 0}\right\| & =\left\|\frac{1}{2^{n+1}} \sum_{i-1}^{n-1} e_{n j}-\sum_{j-1}^{n \cdot 1} \frac{1}{2^{j+1}} e_{j v}\right\| \\
& \leqslant \frac{n-1}{2^{n+1}}+\sum_{j=1}^{n-1} \frac{1}{2^{j+1}}<\frac{1}{2^{2}}+\frac{1}{2}<1 .
\end{aligned}
$$

Therefore we can put $\beta_{n}=\left(1-\left\|\frac{1}{2}\left(a_{n, n-1}-a_{n 0}\right)\right\|^{2}\right)^{1 / 2}$ for $n=1,2, \ldots$, and consider the points

$$
\begin{aligned}
& a_{01}=e_{00} \\
& a_{n n}=\frac{1}{2}\left(a_{n, n-1}+a_{n 0}\right)+\beta_{n} e_{n n}, \quad n=1,2, \ldots
\end{aligned}
$$

Lemma. The above defined points $a_{00}, a_{01}, a_{n k}, k=0,1, \ldots, n, n=1,2, \ldots$. have the following properties:
(i) $\lim _{n} a_{n, n-k-1}=a_{k 0}$ for each $k=0,1, \ldots$.
(ii) For each $n=3,4 \ldots$, the differences $a_{n 1}-a_{n 0}, a_{n 2}-a_{n 1} \ldots$. . $a_{n, n-1}-a_{n, n-2}$ are pairwise orthogonal.
(iii) $\left\|a_{n n}-a_{n k}\right\|=1$ for all $n \geqslant 1, k<n$.
(iv) $\left\|a_{n n}-a_{m k}\right\|>1$ for all $n, m \geqslant 1, k<m, n \neq m$.
(v) $\left\|a_{n n}-a_{00}\right\|>1$ for all $n \geqslant 1$.
(vi) $\left\|a_{01}-a_{m k}\right\|>1$ for all $m \geqslant 1, k<m$.
(vii) $\left\|a_{n n}-a_{m m}\right\|>\frac{1}{2}$ for all $n, m \geqslant 1, n \neq m$.
(viii) $\left\|a_{01}-a_{n n}\right\|>\frac{1}{2}$ for all $n \geqslant 1$.

Proof. Properties (i) and (ii) are clear from the definitions.
(iii) By the definition of $a_{n n}$ we have $a_{n n}-a_{n k}=\frac{1}{2}\left(a_{n, n-1}-a_{n k}\right)+$ $\frac{1}{2}\left(a_{n 0}-a_{n k}\right)+\beta_{n} e_{n n}$. By (ii) the differences $a_{n, n-1}-a_{n k}$ and $a_{n 0}-a_{n k}$ are orthogonal to each other. Since they are also orthogonal to $e_{n n}$, we get

$$
\begin{aligned}
\left\|a_{n n}-a_{n k}\right\| & =\left\|\frac{1}{2}\left(a_{n, n-1}-a_{n k}\right)-\frac{1}{2}\left(a_{n 0}-a_{n k}\right)+\beta_{n} e_{n n}\right\| \\
& =\left\|\frac{1}{2}\left(a_{n, n-1}-a_{n 0}\right)+\beta_{n} e_{n n}\right\| .
\end{aligned}
$$

It follows that

$$
\left\|a_{n n}-a_{n k}\right\|^{2}=\left\|\frac{1}{2}\left(a_{n, n-1}-a_{n 0}\right)\right\|^{2}+\beta_{n}^{2}=1
$$

(iv) We observe that

$$
\begin{aligned}
a_{n n}-a_{n 0}= & \frac{1}{2}\left(a_{n, n-1}-a_{n 0}\right)+\beta_{n} e_{n n} \\
= & \frac{1}{2^{n+2}} \sum_{i}^{n} e_{n j}+\beta_{n} e_{n n}-\bigvee_{j-1}^{n-1} \frac{1}{2^{i+2}} e_{j 0} \\
a_{n n}-a_{m k}= & \frac{1}{2^{n+2}} \sum_{i}^{n} e_{n j}+\beta_{n} e_{n n}-\frac{1}{2^{m+1}} \sum_{i=1}^{k} e_{m i} \\
& +\sum_{i}^{n} \frac{1}{2^{j+2}} e_{j 0}+\frac{1}{2^{n+1}} e_{n 0}-\sum_{i}^{k-1} \frac{1}{2^{j+1}} e_{j 0}-\frac{1}{2^{m+1}} e_{m 0} .
\end{aligned}
$$

Comparing the coefficients in the above two formulas we see that $\left\|a_{n n}-a_{m k}\right\|>\left\|a_{n n}-a_{n 0}\right\|$. The assertion follows then from (iii).
(v) Clearly we have

$$
a_{n n}-a_{00}=a_{n n}=\frac{1}{2^{n+1}} e_{n 0}+\frac{1}{2^{n+2}} \bigvee_{i}^{n}!_{1}^{\prime} e_{n j}+\beta_{n} e_{n n}+\bigvee_{-1}^{n} \frac{1}{2^{j+2}} e_{j 0}
$$

Comparing with the first formula in the proof of (iv) we get $\left\|a_{n n}-a_{00}\right\|>$ $\left\|a_{n n}-a_{n 0}\right\|=1$.
(vi) Obviously $\left\|a_{01}-a_{m k}\right\|=\left\|e_{00}-a_{m k}\right\|>\left\|e_{00}\right\|=1$.
(vii) Assume that $n>m \geqslant 1$. Then we have

$$
\begin{aligned}
a_{n n}-a_{m m}= & \frac{1}{2^{n+2}} \frac{n-1}{i-1} e_{n j}+\beta_{n} e_{n n}-\frac{1}{2^{m+2}} \grave{i=1 ~}_{\cdots}^{m} e_{m i}-\beta_{m} e_{m m} \\
& -\frac{1}{2^{m+2}} e_{m 0}+\bigvee_{m+1}^{n} \frac{1}{2^{j+2}} e_{i 0}+\frac{1}{2^{n+1}} e_{n 0}
\end{aligned}
$$

therefore

$$
\begin{aligned}
\left\|a_{n n}-a_{m m}\right\| & >\left\|\frac{1}{2^{n+2}} \stackrel{\bigcup}{j-1}_{n}^{\prime} e_{n j}+\beta_{n} e_{n n}+\bigcup_{j=1}^{n} \frac{1}{2^{j+2}} e_{j 0}+\frac{1}{2^{n+1}} e_{n 0}\right\| \\
& =\left\|a_{n n}-\sum_{j=1}^{m} \frac{1}{2^{j+2}} e_{j 0}\right\| \\
& \geqslant\left\|a_{n n}\right\|-\sum_{j-1}^{m} \frac{1}{2^{j+2}}>\left\|a_{n n}\right\|-\frac{1}{2}
\end{aligned}
$$

Since $\left\|a_{n n}\right\|>1$ (by (v)), we get $\left\|a_{n n}-a_{m m}\right\|>\frac{1}{2}$.
(viii) Obviously $\left\|a_{01}-a_{n n}\right\|=\left\|e_{00}-a_{n n}\right\|>\left\|e_{00}\right\|=1$.

2

We are now able to construct the announced example. To this end we put

$$
\left.S_{00}=\mid a_{00}, a_{01}\right\}, \quad S_{n}=\operatorname{co}\left(\left\{a_{n 0}, a_{n 1}, \ldots, a_{n n}\right\}\right) \quad \text { for } \quad n=1,2, \ldots
$$

The set $X=\bigcup_{n \geqslant 0} S_{n}$ is then a separable metric space, which is connected because of (i).

We consider now the points $b_{0}=a_{01}, b_{n}=a_{n n}$ for $n=1,2, \ldots$. By (vii) and (viii) the set $B=\left\{b_{n}: n=0,1, \ldots\right\}$ is $\frac{1}{2}$-dispersed. Moreover, if x is a vertex of S_{n} and $n \neq m$, properties (iii)-(vi) imply that $\left\|x-b_{n}\right\|<\left\|x-b_{m}\right\|$. Since we consider the l_{2}-norm, the last inequality extends to all points of $S_{,}$, proving that B is a Chebyshev set in X.

Reference

1. V. Klee, Dispersed Chebyshev sets and coverings by balls, Math. Amn. 257 (1981). 251-260.
